aeson-schemas
Easily consume JSON data on-demand with type-safety
https://github.com/LeapYear/aeson-schemas#readme
Version on this page: | 1.0.3@rev:3 |
LTS Haskell 22.39: | 1.4.2.1@rev:1 |
Stackage Nightly 2024-10-31: | 1.4.2.1@rev:1 |
Latest on Hackage: | 1.4.2.1@rev:1 |
aeson-schemas-1.0.3@sha256:ede43aa6c25d94f14623e606570b95eee83d7eac1826da2a40541e2a6b427707,5834
Module documentation for 1.0.3
aeson-schemas
A library that extracts information from JSON input using type-level schemas
and quasiquoters, consuming JSON data in a type-safe manner. Better than
aeson
for decoding nested JSON data that would be cumbersome to represent as
Haskell ADTs.
Quickstart
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE QuasiQuotes #-}
import Data.Aeson (eitherDecodeFileStrict)
import Data.Aeson.Schema
import qualified Data.Text as T
-- First, define the schema of the JSON data
type MySchema = [schema|
{
users: List {
id: Int,
name: Text,
age: Maybe Int,
enabled: Bool,
groups: Maybe List {
id: Int,
name: Text,
},
},
}
|]
main :: IO ()
main = do
-- Then, load data from a file
obj <- either fail return =<<
eitherDecodeFileStrict "examples/input.json" :: IO (Object MySchema)
-- print all the users' ids
print [get| obj.users[].id |]
flip mapM_ [get| obj.users |] $ \user -> do
-- for each user, print out some information
putStrLn $ "Details for user #" ++ show [get| user.id |] ++ ":"
putStrLn $ "* Name: " ++ T.unpack [get| user.name |]
putStrLn $ "* Age: " ++ maybe "N/A" show [get| user.age |]
case [get| user.groups |] of
Nothing -> putStrLn "* No groups"
Just groups -> putStrLn $ "* Groups: " ++ show groups
Features
Type safe
Since schemas are defined at the type level, parsing JSON objects is checked at compile-time:
-- using schema from above
>>> [get| obj.users[].isEnabled |]
<interactive>:1:6: error:
• Key 'isEnabled' does not exist in the following schema:
'[ '("id", 'Data.Aeson.Schema.SchemaInt),
'("name", 'Data.Aeson.Schema.SchemaText),
'("age",
'Data.Aeson.Schema.SchemaMaybe 'Data.Aeson.Schema.SchemaInt),
'("enabled", 'Data.Aeson.Schema.SchemaBool),
'("groups",
'Data.Aeson.Schema.SchemaMaybe
('Data.Aeson.Schema.SchemaList
('Data.Aeson.Schema.SchemaObject
'[ '("id", 'Data.Aeson.Schema.SchemaInt),
'("name", 'Data.Aeson.Schema.SchemaText)])))]
• In the second argument of ‘(.)’, namely ‘getKey @"isEnabled"’
In the first argument of ‘(<$:>)’, namely
‘(id . getKey @"isEnabled")’
In the first argument of ‘(.)’, namely
‘((id . getKey @"isEnabled") <$:>)’
Point-free definitions
You can also use the get
quasiquoter to define a pointfree function:
getNames :: Object MySchema -> [Text]
getNames = [get| .users[].name |]
You can use the unwrap
quasiquoter to define intermediate schemas:
type User = [unwrap| MySchema.users[] |]
getUsers :: Object MySchema -> [User]
getUsers = [get| .users[] |]
groupNames :: User -> Maybe [Text]
groupNames = [get| .groups?[].name |]
Advantages over aeson
JSON keys that are invalid Haskell field names
aeson
does a really good job of encoding and decoding JSON data into Haskell
values. Most of the time, however, you don’t deal with encoding/decoding data
types manually, you would derive Generic
and automatically derive FromJSON
.
In this case, you would match the constructor field names with the keys in the
JSON data. The problem is that sometimes, JSON data just isn’t suited for being
defined as Haskell ADTs. For example, take the following JSON data:
{
"id": 1,
"type": "admin",
"DOB": "5/23/90"
}
The FromJSON
instance for this data is not able to be automatically generated
from Generic
because the keys are not valid/ideal field names in Haskell:
data Result = Result
{ id :: Int
-- ^ `id` shadows `Prelude.id`
, type :: String
-- ^ `type` is a reserved keyword
, DOB :: String
-- ^ fields can't start with an uppercase letter
} deriving (Generic, FromJSON)
The only option is to manually define FromJSON
– not a bad option, but less
than ideal.
With this library, you don’t have these limitations:
type Result = [schema|
{
id: Int,
type: Text,
DOB: Text,
}
|]
Nested data
What about nested data? If we wanted to represent nested JSON data as Haskell data types, you would need to define a Haskell data type for each level.
{
"permissions": [
{
"resource": {
"name": "secretdata.txt",
"owner": {
"username": "[email protected]"
}
},
"access": "READ"
}
]
}
data Result = Result
{ permissions :: [Permission]
}
deriving (Generic, FromJSON)
data Permission = Permission
{ resource :: Resource
, access :: String
} deriving (Generic, FromJSON)
data Resource = Resource
{ name :: String
, owner :: Owner
} deriving (Generic, FromJSON)
data Owner = Owner
{ username :: String
}
It might be fine for a single example like this, but if you have to parse this
kind of data often, it’ll quickly become cumbersome defining multiple data
types for each JSON schema. Additionally, the namespace becomes more polluted
with each data type. For example, if you imported all four of these data types,
you wouldn’t be able to use name
, username
, resource
, etc. as variable
names, which can become a pain.
Compared with this library:
type Result = [schema|
{
permissions: List {
resource: {
name: Text,
owner: {
username: Text,
},
},
access: Text,
}
}
|]
The only identifier added to the namespace is Result
, and parsing out data
is easier and more readable:
-- without aeson-schemas
map (username . owner . resource) . permissions
-- with aeson-schemas
[get| result.permissions[].resource.owner.username |]
Duplicate JSON keys
Maybe you have nested data with JSON keys reused:
{
"_type": "user",
"node": {
"name": "John",
"groups": [
{
"_type": "group",
"node": {
"name": "Admin",
"writeAccess": true
}
}
]
}
}
This might be represented as:
data UserNode = UserNode
{ _type :: String
, node :: User
}
data User = User
{ name :: String
, groups :: [GroupNode]
}
data GroupNode = GroupNode
{ _type :: String
, node :: Group
}
data Group = Group
{ name :: String
, writeAccess :: Bool
}
Here, _type
, name
, and node
are repeated. This works with
{-# LANGUAGE DuplicateRecordFields #-}
, but you wouldn’t be able to use the
accessor function anymore:
>>> node userNode
<interactive>:1:1: error:
Ambiguous occurrence 'node'
It could refer to either the field 'node',
defined at MyModule.hs:3:5
or the field 'node', defined at MyModule.hs:13:5
So you’d have to pattern match out the data you want:
let UserNode{node = User{groups = userGroups}} = userNode
groupNames = map (\GroupNode{node = Group{name = name}} -> name) userGroups
With this library, parsing is much more straightforward
let groupNames = [get| userNode.node.groups[].node.name |]
Changes
Upcoming
1.0.3
Support GHC 8.8
1.0.2
Bundle test data files in release tarball
1.0.1
Add support with first-class-families-0.6.0.0
1.0.0
Initial release:
- Defining JSON schemas with the
schema
quasiquoter - Extract JSON data using the
get
quasiquoter - Extracting intermediate schemas with the
unwrap
quasiquoter - Include
mkGetter
helper function for generating correspondingget
andunwrap
expressions.