Hoogle Search
Within LTS Haskell 23.1 (ghc-9.8.4)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
-
base Data.Monoid The dual of a Monoid, obtained by swapping the arguments of (<>).
Dual a <> Dual b == Dual (b <> a)
Examples
>>> Dual "Hello" <> Dual "World" Dual {getDual = "WorldHello"}
>>> Dual (Dual "Hello") <> Dual (Dual "World") Dual {getDual = Dual {getDual = "HelloWorld"}}
-
base Data.Monoid No documentation available.
-
base Data.Semigroup The dual of a Monoid, obtained by swapping the arguments of (<>).
Dual a <> Dual b == Dual (b <> a)
Examples
>>> Dual "Hello" <> Dual "World" Dual {getDual = "WorldHello"}
>>> Dual (Dual "Hello") <> Dual (Dual "World") Dual {getDual = Dual {getDual = "HelloWorld"}}
-
base Data.Semigroup No documentation available.
-
base-compat Data.Monoid.Compat The dual of a Monoid, obtained by swapping the arguments of (<>).
Dual a <> Dual b == Dual (b <> a)
Examples
>>> Dual "Hello" <> Dual "World" Dual {getDual = "WorldHello"}
>>> Dual (Dual "Hello") <> Dual (Dual "World") Dual {getDual = Dual {getDual = "HelloWorld"}}
-
base-compat Data.Monoid.Compat No documentation available.
-
base-compat Data.Semigroup.Compat The dual of a Monoid, obtained by swapping the arguments of (<>).
Dual a <> Dual b == Dual (b <> a)
Examples
>>> Dual "Hello" <> Dual "World" Dual {getDual = "WorldHello"}
>>> Dual (Dual "Hello") <> Dual (Dual "World") Dual {getDual = Dual {getDual = "HelloWorld"}}
-
base-compat Data.Semigroup.Compat No documentation available.
-
A semigroupoid satisfies all of the requirements to be a Category except for the existence of identity arrows.
newtype
Dual (k2 :: k -> k1 -> Type) (a :: k1) (b :: k)semigroupoids Data.Semigroupoid.Dual No documentation available.
Page 1 of many | Next