uncertain
Manipulating numbers with inherent experimental/measurement uncertainty
https://github.com/mstksg/uncertain#readme
LTS Haskell 23.1: | 0.4.0.1 |
Stackage Nightly 2024-12-26: | 0.4.0.1 |
Latest on Hackage: | 0.4.0.1 |
uncertain-0.4.0.1@sha256:d066ec8af02473108096e40ea1e7fb76f797a81ce7958fbd9e88ed7ad2fe8275,1510
Module documentation for 0.4.0.1
Uncertain
Provides tools to manipulate numbers with inherent experimental/measurement uncertainty, and propagates them through functions based on principles from statistics.
Usage
import Numeric.Uncertain
Create numbers
7.13 +/- 0.05
91800 +/- 100
12.5 `withVar` 0.36
exact 7.9512
81.42 `withPrecision` 4
7 :: Uncert Double
9.18 :: Uncert Double
fromSamples [12.5, 12.7, 12.6, 12.6, 12.5]
Can be descontructed/analyzed with :+/-
(pattern synonym/pseudo-constructor
matching on the mean and standard deviation), uMean
, uStd
, uVar
, etc.
Manipulate with error propagation
ghci> let x = 1.52 +/- 0.07
ghci> let y = 781.4 +/- 0.3
ghci> let z = 1.53e-1 `withPrecision` 3
ghci> cosh x
2.4 +/- 0.2
ghci> exp x / z * sin (y ** z)
10.9 +/- 0.9
ghci> pi + 3 * logBase x y
52 +/- 5
Propagates uncertainty using second-order multivariate Taylor expansions of functions, computed using the ad library.
Arbitrary numeric functions
ghci> liftUF (\[x,y,z] -> x*y+z)
[ 12.2 +/- 0.5
, 56 +/- 2
, 0.12 +/- 0.08
]
680 +/- 40
Correlated samples
Can propagate uncertainty on complex functions take from potentially correlated samples.
ghci> import Numeric.Uncertain.Correlated
ghci> evalCorr $ do
x <- sampleUncert $ 12.5 +/- 0.8
y <- sampleUncert $ 15.9 +/- 0.5
z <- sampleUncert $ 1.52 +/- 0.07
let k = y ** x
resolveUncert $ (x+z) * logBase z k
1200 +/- 200
“Interactive” Exploratory Mode
Correlated module functionality can be used in ghci or IO
or ST
, for
“interactive” exploration.
ghci> x <- sampleUncert $ 12.5 +/- 0.8
ghci> y <- sampleUncert $ 15.9 +/- 0.5
ghci> z <- sampleUncert $ 1.52 +/- 0.07
ghci> let k = y**x
ghci> resolveUncert $ (x+z) * logBase z k
1200 +/- 200
Monte Carlo-based propagation of uncertainty
Provides a module for propagating uncertainty using Monte Carlo simulations, which could potentially be more accurate if third-order and higher taylor series expansion terms are non-negligible.
ghci> import qualified Numeric.Uncertain.MonteCarlo as MC
ghci> import System.Random.MWC
ghci> let x = 1.52 +/- 0.07
ghci> let y = 781.4 +/- 0.3
ghci> let z = 1.53e-1 `withPrecision` 3
ghci> g <- create
ghci> cosh x
2.4 +/- 0.2
ghci> MC.liftU cosh x g
2.4 +/- 0.2
ghci> exp x / z * sin (y ** z)
10.9 +/- 0.9
ghci> MC.liftU3 (\a b c -> exp a / c * sin (b**c)) x y z g
10.8 +/- 1.0
ghci> pi + 3 * logBase x y
52 +/- 5
ghci> MC.liftU2 (\a b -> pi + 3 * logBase a b) x y g
51 +/- 5
Comparisons
Note that this is very different from other libraries with similar data types (like from intervals and rounding); these do not attempt to maintain intervals or simply digit precisions; they instead are intended to model actual experimental and measurement data with their uncertainties, and apply functions to the data with the uncertainties and properly propagating the errors with sound statistical principles.
For a clear example, take
> (52 +/- 6) + (39 +/- 4)
91. +/- 7.
In a library like intervals, this would result in 91 +/- 10
(that is, a
lower bound of 46 + 35 and an upper bound of 58 + 43). However, with
experimental data, errors in two independent samples tend to “cancel out”, and
result in an overall aggregate uncertainty in the sum of approximately 7.
Copyright
Copyright (c) Justin Le 2016
Changes
Changelog
Version 0.4.0.1
September 10, 2024
https://github.com/mstksg/uncertain/releases/tag/v0.4.0.1
- Fix missing import for some versions of base
Version 0.4.0.0
August 22, 2024
https://github.com/mstksg/uncertain/releases/tag/v0.4.0.0
- Dropped support for GHC < 8.10
- Fixed support for GHC 9.0
Version 0.3.1.0
https://github.com/mstksg/uncertain/releases/tag/v0.3.1.0
- Added support for GHC 8.0 by providing pattern synonym type signatures in the proper format.
(:+/-)
pattern synonym now exported as a “constructor” withUncert
- Generalized the type signatures for
liftCX
functions to work for alla
. Restriction toFractional
now occurs only at exit points of theCVar
abstraction. - Removed the redundant constraint on
Functor m
for the MonteCarlo module’sliftUX
functions.
Version 0.3.0.0
https://github.com/mstksg/uncertain/releases/tag/v0.3.0.0
- (Breaking change) Moved the top-level modules from Data to Numeric, to better reflect the nature of the library and to align with the convention of other similar libraries.
Version 0.2.0.0
https://github.com/mstksg/uncertain/releases/tag/v0.2.0.0
- Initial release, re-written from the unreleased
0.1.0.0
by re-implementing error propagation with the ad library.